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From (and a really good explanation at): https:/learnopencv.com/understanding-convolutional-neural-networks-cnn/



Sobel Kernel Example

Here we show a concrete example of how a Sobel Kernel detects vertical edges. Recall the convolution operation
defined above is the weighted sum of the kernel values with the corresponding input values. Since the Sobel
kernel has positive values in the left column, zeros in the center column, and negative values in the right column,
as the kernel is moved from left to right across the image, the convolution operation is a numerical approximation
of the derivative in the horizontal direction, and therefore, the output produced detects vertical edges. This is an
example of how specific kernels can detect various structures in images like edges. Other kernels can be used to
detect horizontal lines/edges or diagonal lines/edges. In CNN, this concept is generalized. Since the kernel weights
are learned during the training process, CNNs can therefore learn to detect many types of features that support
image classification.
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Source: https://setosa.io/ev/image-kernels/

From (and a really good explanation at): https://learnopencv.com/understanding-convolutional-neural-networks-cnn/
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Ficure 1. Pipeline for generation of continuous morphological traits per genus. A deep metric learning model was trained on d
ages. It used the genus determinations to pull specimens from the same genus closer together in space. A vector of 128 traits was
from the model for each image. The average vector for each genus was then calculated.
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Ficure 2. Pipeline of phylogenetic tree generation. First the continuous traits given by the deep learning model were combined with the
molecular data. Both of these were then fed into the phylogenetic inference model which generates a tree.
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FiGure 3. Subset of the reference phylogeny from the Rove-Tree-11 dataset, for the 10 genera with the most images in the dataset. Each
leaf represents a genus. Example specimens from each of the genera are shown in black and white for reference. Reproduced from Hunt and
Pedersen (2022) with permission.
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Ficure 4. Distribution of specimens per genus (bottom left) and per subfamily (top right). Each slice in the stacked bar chart represents a

different species within that genus. Reproduced from Hunt and Pedersen (2022) with permission.



TaBLE1l. Tree Inference Results. Each row is the average of 5 runs. As a baseline for the scores, five randomly generated trees of this size gave

anAS? of 0.702+0.022 and a nRF? score of 0.993 +0.007. Results are reported with 95% confidence intervals, using a student’s t-distribution.
Best results in bold. Results within confidence interval of the best score are underlined.

nAS nRF
Dataset Split Loss Function Average Median Average Median
Clade Arcface - 0.627 4+ 0.022 0.625 o 0.975 + 0.017 0.969
Clade Contrastive g 0.629 + 0.017 0.637 = 0.967 + 0.005 0.969
Clade Margin o 0.615 + 0.045 0.616 S 0.975 +0.017 0.970
Clade Multisim. + 0.506 + 0.034 0.512 H 0.877 + 0.043 0.897
Clade Proxy = 0.638 + 0.009 0.634 5, 0.987 + 0.022 1.000
Clade Triplet 0 0.560 + 0.045 0.563 9 0.901 + 0.065 0.903
Stratified Arcface : 0.692 + 0.042 0.708 ; 0.992 + 0.022 1.000
Stratified Contrastive Q 0.531 + 0.024 0.538 S 0.829 + 0.026 0.815
Stratified Margin oy 0.596 + 0.036 0.597 P 0.928 + 0.045 0.925
Stratified Multisim. H 0.524 + 0.076 0.505 +l 0.845 + 0.057 0.825
Stratified Proxy X 0.699 + 0.009 0.699 0 1.000 + 0.000 1.000
Stratified Triplet 2 0.530 + 0.067 0.532 g 0.886 + 0.062 0.900

a normalized Align Score
b normalized Robinson-Foulds



TasLE 2. Phylogenetic signal quantification using Abouheif’s Cmean. Each row is the average of the 128 traits of all 5 runs. Results reported
with 95% confidence intervals, using a student’s t-distribution. Best results in bold. Results within confidence interval of the best score are

underlined
P value < 0.05
Average Cmean Maximum Cmean with Cmean

Dataset split Loss function Cmean P value Cmean P value >0.3 > 0.5 > 0.7
Clade Arcface 0.107 + 0.010 0.219 4+ 0.019 0.480 0.001 9% 0% 0.0%
Clade Contrastive 0.288 + 0.014 0.067 + 0.011 0.794 0.001 46% 14% 0.6%
Clade Margin 0.188 + 0.012 0.118 + 0.015 0.610 0.001 21% 2% 0.0%
Clade Multisim. 0.208 + 0.013 0.118 + 0.016 0.658 0.001 28% 4% 0.0%
Clade Proxy 0.101 + 0.010 0.226 + 0.020 0.519 0.001 6% 0% 0.0%
Clade Triplet 0.244 + 0.012 0.076 + 0.011 0.683 0.001 35% 5% 0.0%
Stratified Arcface —0.028 + 0.007 0.511 + 0.022 0.241 0.008 0% 0% 0.0%
Stratified Contrastive 0.281 + 0.012 0.050 + 0.009 0.706 0.001 44% 8% 0.2%
Stratified Margin 0.164 + 0.011 0.138 + 0.015 0.578 0.001 16% 1% 0.0%
Stratified Multisim. 0.128 + 0.010 0.179 4+ 0.018 0.517 0.001 10% 0% 0.0%
Stratified Proxy —0.025 + 0.008 0.498 + 0.023 0273 0.007 0% 0% 0.0%
Stratified Triplet 0.232 + 0.011 0.076 + 0.012 0.645 0.001 31% 4% 0.0%
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Ficure 5. Examples of gradcam saliency maps (trait 30 from the stratified dataset with triplet loss, seed 4). Saliency maps are shown super-
imposed on the mask of the beetle with brighter pixel values indicating higher influence on the latent variable. Saliencies in the top row are
from genera (a) Atrecus, (b) Lithocharis and (c) Ontholestes, these show the model focusing on the abdomen for this trait. And (d) Gyrohypnus,

(e) Nudobius and (f) Rugilus demonstrate some counter examples for this trait. In the case of Rugilus (f) the model focuses instead on the neck
region which is distinctively small in the Rugilus genus.
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Ficure 6. Comparison of a) reference phylogeny, b) best molecular-only tree and c) best total evidence tree. Differences between best
molecular-only and best total evidence tree highlighted by indicating the controversial groups 1,2,3,4 on both trees. Plots produced in part
using iTOL (Letunic and Bork, 2021)
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Ficure 7. Combined Violin plot/Strip chart of the effect of including different gene combinations on the normalised Align Score. In each

column the results to the left (darker) are for molecular-only ablations, and to the right (lighter) are for total evidence ablations. Each point
represents an individual result.



TasLe 3. Results of total evidence analysis — combining molecular data and deep learning derived morphological traits. Confidence inter-
vals are 95% level based on 5 runs. As a baseline comparison for the scores, five randomly generated trees of this size would give a nAS of
0.702 + 0.022 and a nRF score of 0.993 + 0.007. Best results in bold. Results within confidence interval of the best score are underlined

nAS nRF
Traits Dataset split Loss function Average Median Average Median
Molecular Only - - 0.141 + 0.017 0.147 0.382 + 0.040 0.405
Total Evidence Clade Arcface © 0.139 + 0.021 0.138 o 0.337 + 0.024 0.333
Total Evidence Clade Contrastive S 0.119 + 0.014 0.119 = 0.311 + 0.033 0.315
Total Evidence Clade Margin p 0.127 + 0.017 0.127 = 0.319 + 0.025 0.315
Total Evidence Clade Multisim + 0.135 + 0.024 0.136 +i 0.316 + 0.045 0.306
Total Evidence Clade Proxy K 0.127 + 0.013 0.126 S 0.324 + 0.041 0.315
Total Evidence Clade Triplet ! 0.121 + 0.023 0.118 “ 0.309 + 0.031 0.324
Total Evidence Stratified Arcface : 0.166 + 0.037 0.160 2 0.383 + 0.028 0.389
Total Evidence Stratified Contrastive = 0.141 + 0.032 0.139 = 0.313 + 0.019 0.306
Total Evidence Stratified Margin o 0.162 + 0.058 0.143 = 0.324 + 0.011 0.324
Total Evidence Stratified Multisim + 0.135 + 0.016 0.133 + 0.337 + 0.026 0.333
Total Evidence Stratified Proxy = 0.155 + 0.028 0.149 A 0.365 + 0.021 0.361
Total Evidence Stratified Triplet ; 0.121 + 0.012 0.119 2 0.310 + 0.017 0.315




TaBLE 4. Best subset of genes® given the number of genes. Best results in bold

Molecular only Total evidence

No. genes Best gene combination nAS nRF Best gene combination nAS nRF

0 - - - - 0.461 0.846
1 285 0.228 0.433 285 0.214 0.420
2 285, ArgK 0.171 0.362 285, ArgK 0.159 0.408
3 285, COIL, Wg 0.129 0.275 285, ArgK, topo 0.135 0.286
4 285, COI, topo, Wg 0.130 0.314 28S, cadB, COI, Wg 0.111 0.278
5 285, ArgK, cadB, COI, Wg 0.133 0.432 28S, cadB, COI, topo, Wg 0.111 0.288
6 285, ArgK, cadA, cadB, COJ, topo 0.127 0.342 28S, ArgK, cadB, COI, topo, Wg 0.126 0.324
7 All 0.136 0.378 All 0.124 0.315

Genes used in this analysis: nuclear ribosomal 28S (28S), arginine kinase (ArgK), carbamoyl- phosphate synthetase (cadA and cadC),
mitochondrial protein-encoding COI (COI) topoisomerase I (topo) and wingless (Wg)



DATA AVAILABILITY

The data underlying this article are available at http://
doi.org/10.17894/ucph.39619bba-4569-4415-9f25-d6a0ff6
4f0e3 for the Rove-Tree-11 dataset and in the arti-

cle’s dryad repository (https://doi.org/10.5061/dryad.

9cnp5hqqq) for the further molecular data and asso-
ciated genbank accession numbers, example inference
code, all generated trees, and stratified dataset split.
All trained model runs and extracted trait matrices are
available in the following erda repository https://erda.
ku.dk/archives/440063cabdb1789ad82f31366c926b4e/pu
blished-archive.html. The reference tree, best molecu-
lar tree and best total-evidence tree can be found on
TreeBASE at http://purl.org/phylo/treebase/phylows/
study/TB2:531300?x-access-code=397cc12bd8047bf52b3
12b4743f23e2b&format=html. The code used in this
analysis is available on github https://github.com/
robertahunt/Revisiting_Deep_Metric_Learning_PyTor
ch, commit a6654453c3b7785a17511255e02c468c53fe6£5d,
forked from Roth et al. (2020).



Quantitative morphological characteristics, extracted through the application of deep learning techniques
applied to images of pinned insect specimens produced for mass collections digitization purposes, have been
demonstrated to possess phylogenetic relevance. These traits, when integrated into molecular phylogenies, have
the potential to augment the phylogenetic framework in a comprehensive total-evidence based approach,
offering the possibility of incorporating species lacking molecular data into phylogenetic trees. However, the
improvement of phylogenetic reconstructions by the inclusion of such morphological data derived through deep
learning methodologies remains minimal. While this approach has shown promise, scaling up its
implementation is still not feasible for 2 reasons. First, the phylogenetic signal of the deep learning derived traits,
at least in our dataset, was not strong enough to justify the additional effort in gathering the data. Second, the
effort required for our image-based model testing, even though likely lesser than an effort by the expert to
assemble a traditional morphological phylogenetic matrix, is still significant.



“Homology”

“Habitus”

Cmeans vs Pagel lambda?

Loss functions

Other traits, like calls?

How long would it take a skilled taxonomist in this field to take all the measurements and make a tree
that way?

Some say if you build a tree from morphological characters, you can't use that tree to test the evolution of
those characters (because it would be circular). Is that true?

s it possible to incorporate continuous trait information in a maximum likelihood framework?

How realistic are these morphotyping approaches for species with high plasticity?

How do we scale deep-learning-based morphotyping to megaflora/megafauna that outscale standard
imaging/camera resolutions?

What are the assumptions of total evidence approach or what total evidence approach means?

Wouldn't it be essential to have a taxonomist or group expert curating the data, such as collection names
that will later be used by the deep learning, and also reviewing the iNaturalist names before using them
for these analyses? or is not so relevant?

Does this show more evidence of need to digitize collections?



