Species delimitation
How many species in this clade?
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The goal of species delimitation is to define the number of species in a clade and the boundaries between them. Here we focus on how

genetic and phenotypic divergence can be used to define species. When species are markedly different genetically and phenotypically

(e.g., butterflies # vs. f), then they are clearly good species. However, when levels of genetic and phenotypic divergence are uncorrelated

(e.g., butterflies e vs. fand # vs. b) or when divergence is intermediate (e.g., butterflies ¢ vs. d), species status can be ambiguous.
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FIGURE 1. Lineage separation and divergence (speciation) and
species concepts (after de Queiroz, 1998, 1999, 2005a). This highly sim-
plified diagram represents a single lineage (species) splitting to form
two lineages (species). The gradations in shades of gray represent the
daughter lineages diverging through time, and the horizontal lines la-
beled SC (species criterion) 1 to 9 represent the times at which they
acquire different properties (i.e., when they become phenetically dis-
tinguishable, diagnosable, reciprocally monophyletic, reproductively
incompatible, ecologically distinct, etc.). The entire set of properties
forms a gray zone within which alternative species concepts come into
conflict. On either side of the gray zone, there will be unanimous agree-
ment about the number of species. Before the acquisition of the first
property, everyone will agree that there is a single species, and after
the acquisition of the last property, everyone will agree that there are
two. In between, however, there will be disagreement. The reason is
that different contemporary species concepts adopt different proper-
ties (represented by the horizontal lines) as their species criteria—that
is, as their cutoffs for considering a separately evolving lineage to have
become a species.
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lllustration of the multispecies coalescent showing the relationship between the species tree o

(black outline) and gene trees (dashed red lines embedded in the species tree). The time between
the two speciation events (T, measured in coalescent units) can be used to calculate the probability
of the four possible gene trees (using the equations shown). Note that two of the gene trees are
topologically identical but they differ in the times at which lineages coalesce.

Wikipedia Sept 12, 2025: Multispecies Coalescent



The figure below illustrates the D-statistic with an example from my own work (see Ottenburghs et
al. (2017) for more details). Comparing the genomes of four goose species reveals that Cackling
Goose (Branta hutchinsii) and Canada Goose (B. canadensis) share more derived alleles than
expected by chance. The resulting positive D-statistic suggests introgression between these species,
which is not that surprising because there is a hybrid zone between these geese.

If the D # 0 and Z > 3, then there
has been introgression
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The positive D-statistic indicates an excess of ABBA-patterns in the genomes of these geese, suggesting
introgression between Cackling Goose (Branta hutchinsii) and Canada Goose (B. canadensis). Based on
Ottenburghs et al. (2017) BMC Evolutionary Biology

Jente Ottenburghs: https://avianhybrids.wordpress.com/2019/11/09/d-statistics-for-dummies-a-simple-test-for-
introgression/



For these reasons, discrete model selection alone
may not always provide the best estimate of lineage
independence when both gene flow and genetic drift
are modeled. When inferring species limits using
PHRAPL, it is thus important to also consider parameter
estimates derived from a grid search, as these values are
informative of the species boundaries we aim to infer. To
facilitate this, we developed the genealogical divergence
index (gdi), which can be calculated from estimates of
migration rate and coalescence time obtained from a
PHRAPL analysis. This index provides an estimate of
the overall degree of genetic divergence between two
taxa due to the combined effects of genetic isolation
and gene flow and is useful in the interpretation of the
results from model selection and parameter estimation.
If one samples two gene copies from species 1 and one
gene copy from species 2, then let G; be the resulting
genealogy in which the two gene copies from species
1 are sister to each other. We define the unscaled GDI,,
to be

GDI, =P(G1|M1,M3,t)
where M; and M, are bi-directional migration rates
because the divergence of the species at time t. Rather

than analytically calculating GDI,, we approximate it
using ms (Hudson 2002) such that

gdi, =observed(GDI,)

Jackson et al. 2017

For a given Mj,M,, and t, we iteratively simulate
coalescent trees with three gene copies under the two-
taxon species tree model described above, and then
calculate the proportion of simulated trees in which the
two gene copies originating from species 1 are sisters.
The index is then scaled to be between 0 (panmixia) and
1 (strong divergence) using

gdi=[observed(gdi, ) — min(gdi, )]/[max(gdi,)
—min(gdi,)]

where min(gdi,) ~1/3 (with three tips, under panmixia,
species 1 monophyly is expected ~1/3 of the time)
and max(gdi,) =1 (with extreme isolation, species 1 will
always be monophyletic). The gdi, along with confidence
intervals, can be calculated using the CalculateGdi
function within PHRAPL.

The gdi is similar to the genealogical sorting index
(gsi; Cummings et al. 2008) in that it calculates the
degree of nonmonophyly in a set of gene trees, and in

fact these two indexes are highly correlated (R2=0.9)
and perform similarly if used to delimit species based
on a range of theoretical cutoffs (see Supplementary
Figs S3a, b). However, the two indexes differ in two
important ways. First, PHRAPL aims to delimit species
while simultaneously understanding those aspects of
demographic history that have given rise to these
groups, and the gdi explicitly incorporates these inferred
processes (in the form of estimated parameter values).
The gsi, in contrast to this, measures divergence directly
from genetic data, and thus does not presuppose any
information about the underlying causes of divergence.
Secondly, the gdi measures divergence between two focal
sister populations or groups, which is the level at which
delimitation questions arise. However, the gsi measures
the exclusivity of a focal taxon relative to the entire tree,
and thus the degree of divergence inferred for that taxon
can depend on patterns of genetic structure within other
parts of the tree (Winter et al. 2016).
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FIGURE 1. Three histories underlying simulated datasets that were
analyzed using PHRAPL: a) taxa A and B diverged at time t4p in the
past; b) taxa A and B are a single panmictic lineage; and c) taxa A and
B diverged at time £4p in the past, but continued to share migrants at
rate M. In histories (a) and (c), species coalescent times t45 were varied
between 0.05 and 4 (shown in the shaded region), where times t are
in units of 4N. In history (c), M was varied between 0.5 and 10, where
M =4Nm. Note that the branch lengths preceding t4pc in these trees
were adjusted according to the tjpsimulated (see text); however, this
scaling is not shown here.
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Figure 1

The goal of species delimitation is to define the number of species in a clade and the boundaries between them. Here we focus on how
genetic and phenotypic divergence can be used to define species. When species are markedly different genetically and phenotypically
(e.g., butterflies # vs. f), then they are clearly good species. However, when levels of genetic and phenotypic divergence are uncorrelated
(e.g., butterflies e vs. fand 4 vs. b) or when divergence is intermediate (e.g., butterflies ¢ vs. d), species status can be ambiguous.
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Heterogeneous genome divergence can affect estimates of species limits. In the case of recently diverged, phenotypically distinct
species, random partial sampling throughout the genome results in low estimates of genetic divergence, suggesting the two species
should be collapsed. If instead we sequence those parts of the genome that underpin phenotypic differences, we infer high genetic
divergence, suggesting the two species are distinct. However, if we sequence the whole genome, we uncover high levels of heterogeneity
and overall low divergence, and the status of these two species remains ambiguous.



Despite concerns that genetic approaches are overly zealous in splitting species, 36% of studies
identified either the same number or fewer species than the initial taxonomy. In those cases where
genomic species delimitation increased the number of species, the median increase in species num-
ber was twofold. In many cases, the genomic species delimitation aligned closely with species
delimitations inferred from smaller mitochondrial or multilocus datasets, suggesting that smaller
genetic datasets can delimit species as accurately as genomic datasets. Many studies refrained from
revising taxonomy, commenting that they would enact taxonomic change after they further vali-
dated findings through additional sampling or phenotypic data. In the end, only 36% of the studies
proposed formal taxonomic changes; notably, studies that revised taxonomy were 2.2 times more
likely to include phenotypic data.



While the costs of sequencing have dropped six orders of magnitude since 2000, collecting
genomic data remains prohibitively expensive and inaccessible for many researchers. Further, ge-
nomic datasets require access to high-speed networks to download and share the data, multicore
computers with high memory footprints and reliable power sources to process the data, and re-
dundant hard drive storage to preserve the data long-term (but see Handika & Esselstyn 2024).
These resources are not universally available, nor is the training to collect and analyze these data.
Expecting or requiring genomic data for species-delimitation studies could inadvertently exacer-
bate existing inequities in the field and further bias taxonomic shortfalls (Linck & Cadena 2024).
Indeed, the regions predicted to have the greatest shortfalls (Freeman & Pennell 2021) are some of
the same regions with less developed research infrastructure (Figure 34). We thus caution against
setting genomic data as the gold standard for the field; many of the most pressing, practical con-
cerns of species delimitation can be effectively and efficiently addressed using smaller datasets

(Bertola et al. 2024).



FUTURE ISSUES

1

What other types of genomic data could we collect to aid in genomic species
delimitation?

How can genomic species delimitation methods include other sources of data—
e.g., morphological differentiation, reproductive barriers—to create an integrative
delimitation approach?

. How can the extent of heterogeneity in genomic divergence be used as a metric for

capturing species divergence, and thus, in delimiting species?
How can genomic species delimitation help address the taxonomic impediment?

How can genomic species delimitation help unite the fields of taxonomy, systematics,
and speciation biology?

How can artificial intelligence help delimit species more efficiently and effectively?



